Review Problems

January 13, 2017

- 1. (Fall 2004, Exam 1, #6) The integral for the volume of the solid generated by revolving the region bounded by the curves $y = x^2$, y = 0, and x = 1about the line x = 1 is:
 - (a) $\int_0^1 \pi (2x^3 2x^4) dx$ (b) $\int_0^1 \pi (2x^4 - 2x^2) dx$ (c) $\int_0^1 \pi (2x^3 - 2x^2) dx$ (d) $\int_0^1 \pi (2x^2 - 2x^3) dx$ (e) $\int_0^1 \pi (x^2 - x^3) dx$
- 2. Take the region bounded by the curves $y = x^2$, $y = 2 x^2$, and x = 0, and rotate it about the y-axis. Find the volume of the solid generated.
- 3. (Fall 2007, Exam 1, #8) Take the region bounded by the curves $y = \sqrt{x}$ and y = x and rotate it about the x-axis. Find the volume of the solid generated.
- 4. (Fall 2007, Exam 1, #9) Take the region bounded by $y = x^2$ and y = x and rotate it about the line x = 1. using the method of cylindrical shells, the volume of the solid generated is given by what integral?